To Create Colorful Life

令和5年度仙台市既存放射光施設活用事例 創出事業(トライアルユース)成果報告

水素雰囲気下での放射光計測による Pd系多層膜における水素応答の把握

2024.3.27 Tianma Japan株式会社

- 会社名: Tianma Japan株式会社
- 資本金:1億円
- 従業員:約700名
- 設 立: 2003年4月1日

(NECの液晶事業を会社分割) 代表取締役執行役員社長:于 徳樹 事業内容:中小型ディスプレイの 開発・製造・販売

偏光干渉式水素ガスセンサ の開発

Tianma Japan, Ltd. Confidential and Proprietary

背景

これまでの取組み

触媒層による応答速度向上

Pd薄膜のアモルファス化

これまでの取組み

<u>PdCuSiアモルファス膜</u>

【真空中-XPS測定】水素曝露前後(H2:4%, 5min)における表面分析

水素雰囲気下での放射光計測(XAFS, XRD)により、センサ構成材料の 水素化にともなう結晶構造(原子配列)および化学結合状態の変化を計測

 ①水素応答に関する調査 → 検知性能向上 水素曝露による結晶構造(原子配列)および化学結合状態の変化
 ②水素脆化に関する調査 → 長期信頼性の確保 水素耐性試験の前後における結晶構造(原子配列)の変化

高性能化に向けた材料開発の設計指針構築

スケジュール

Pd系水素吸蔵合金ならびにZnO(光干渉層)の評価サンプル 実際の素子より積層構造を単純化し、スパッタ法により成膜

No.	表面層(nm)	計測層(nm)	下地層(nm)	基板	耐性試験※ (H ₂ -stress)	XAFS	XRD	機能
1	Pt(5)	Pd(15)	ZnO(50)	Glass	_	—	0	Ref.
2	Pt(5)	Pd(50)	ZnO(50)	Glass	_	\bigcirc	0	
3	Pt(5)	PdAu(15)	ZnO(50)	Glass	0	_	0	
4	Pt(5)	PdAu(50)	ZnO(50)	Glass	0	\bigcirc	0	水素反応層
5	Pt(5)	PdAu(50)	Si ₃ N ₄ (50)	Glass	_	—	0	
6	Pt(5)	PdCuSi(50)	ZnO(50)	Glass	0	\bigcirc	—	业主沃运网
7	_	PdCuSi(100)	—	Glass	0	—	0	小糸辺迥眉
8	Pt(5)	PdAu(5)	ZnO(10)	熱酸化Si	0	\bigcirc	_	
9	Pt(5)	PdAu(5)	ZnO(5)	熱酸化Si	0	\bigcirc	—	光干渉層
10	Pt(5)	PdAu(5)	ZnO(2)	熱酸化Si	0	\bigcirc	—	
11	Pt(5)/PdCuSi(100)/PdAu(30)/ZnO(64)/Ta(6)/ZnO(30)			Glass	_	_	0	センサ構造

Tianma Japan, Ltd. Confidential and Proprietary

※耐性試験:N₂-10min⇔100%H₂-10minの反復曝露を計516回(172時間)実施

測定方法 -- XAFS--

測定施設: あいちシンクロトロン光センター ビームライン: BL11S2

●測定内容
検出方法:蛍光収量法
サンプルサイズ:□9mm
吸収端:Pd-K,Zn-K
測定時間:1.0-1.5h/回
測定雰囲気:N₂,4%H₂,100%H₂

フローセルを用いて上記雰囲気に おけるin-situ測定を実施

測定方法 -- XRD--

測定施設: あいちシンクロトロン光センター ビームライン: BL8S1

●測定内容
検出方法:
① θ-2θスキャン (Out-of-Plane)
② 2θχ-φスキャン (In-Plane)
サンプルサイズ:□1inch
波長: 0.86Å (@14.37keV)
測定時間:7-10min/回
測定雰囲気:Air,4%H₂,4%CH₄

※中央にポリカーボネートの カバーを装着し内部を密閉

測定結果 -純Pd-

XAFS測定

膜構成:Pt(5nm)/Pd(50nm)/ZnO(50nm) // Glass 吸収端:Pd K-edge

測定結果 -純Pd-

膜構成:Pt(5nm)/Pd(15nm)/ZnO(50nm) // Glass

XAFS測定

膜構成:Pt(5nm)/PdAu(50nm)/ZnO(50nm) // Glass 吸収端:Pd K-edge

Tianma Japan, Ltd. Confidential and Proprietary

振幅小さくS/Nが悪いため動径分布関数の導出困難

測定結果 -- PdAu合金(水素反応層)--

XAFS測定

膜構成:Pt(5nm)/PdCuSi(50nm)/ZnO(50nm) // Glass 吸収端:Pd K-edge

TIANMA

CEYチャンバ XAFS測定(転換電子収量法) 膜構成:Pt(5nm)/PdCuSi(50nm)/ZnO(50nm) // Glass $\overline{}$ 吸収端: Pd K-edge X線 測定時間:10min/回 He $\overline{}$ 1.2 0.8 0.6 1 0.4 0.8 normalized xµ(E) (A⁻²) 0.2 0.6 0 0.4 -0.2 0.2 -0.4 Y231019-T3(as-depo) 0 -0.6 Y231019-T3(as-depo) Y231019-T3(H-Stress) Y231019-T3(H-Stress) -08 -0.2 12 2 6 8 10 14 0 24200 24300 24400 24500 24600 24700 24800 (Å⁻¹) Energy Wavenumber (eV)

測定結果 -- PdCuSi合金(水素透過層)--

XRD測定 膜構成:PdCuSi(100nm) // Glass

XAFS/XRDともに水素曝露および耐性試験による

構造変化はみられなかった

XAFS測定

膜構成:Pt(5nm)/PdAu(5nm)/ZnO(x nm) // 熱酸化Si基板 吸収端:Zn K-edge 雰囲気ガス:N₂ | SPring-8のXAFSデータベースから | ZnOのデータを引用しRDFを比較

5nmと10nmは参照試料と同様に遠距離側の成分(Zn-Zn結合)がみられる Tianma Japan, Ltd. Confidential and Proprietary 2nmではほぼない=アモルファスであることを確認

XPS測定(追加分析)

PdAu/ZnO界面近傍とZnO膜内部の酸化状態を分析

膜構成:Pt(5nm)/PdAu(5nm)/ZnO(10 nm) // 熱酸化Si基板

装置名:PHI製 Quantum-2000 X線源:monochromated Al-Kα線(1486.6eV) 40W 光電子取出し角度:45° 測定エリア:200μm φ

スパッタ条件: Ar+イオン, 加速電圧2kV, 2×2mm

ZnOの酸化状態には大きな変化なし

▼TIANMA

XAFS測定(XANESスペクトル比較)

膜構成:Pt(5nm)/PdAu(5nm)/ZnO(x nm) // 熱酸化Si基板 吸収端:Zn K-edge

測定結果 – 光干渉層(下地層)材料の比較-

断面TEM 膜構成:Pt(5nm)/PdCuSi(100nm)/PdAu(30nm)/

ZnO(64nm)/Ta(6nm)/ZnO(30nm) // Glass

各層とも比較的均一に形成されている 表面PtはPuCuSi膜中へ一部拡散(触媒作用への影響は未確認)

Tianma Japan, Ltd. Confidential and Proprietary

XRD測定 膜構成:Pt(5nm)/PdCuSi(100nm)/PdAu(30nm)/

ZnO(64nm)/Ta(6nm)/ZnO(30nm) // Glass

水素透過層(PdCuSi)を通過した水素原子による反応層(PdAu)の変化を検出 メタンCH₄ではスペクトルの変化なし(水素選択性)

- ·Pd系検知材料:
 - ー純Pd, PdAu合金が水素吸蔵により異方的な格子膨張を示すことが分かった。
 - ーPdAuが純Pd並の出力を期待できる材料であることが分かった。
- ・光干渉層材料: ZnOが水素に対して安定かつ、Si₃N₄よりも配向性に優れることが確認できた。
- ・センサ素子:水素反応層(PdAu)の応答ならびに水素選択性が確認できた。
- ② 水素耐性
 - ・PdAu: 水素曝露による結晶性向上がみられた。(エージングによる膜改質の期待)
 - ・PdCuSi: 水素を長時間曝露してもスペクトル変化が生じない。 →構造変化による<mark>膜の脆化リスクは低い</mark>ことが示唆される結果を得た。

以上より、高性能化に向けた材料開発の方向性が得られた。

・高エネルギー or 高輝度測定によるS/N向上(Pd系合金、センサ素子)

・水素曝露によるPdAu合金膜の改質評価

・時間分解測定による応答性能の比較

Tianma Japan, Ltd. Confidential and Proprietary

To Create Colorful Life

PASSION EFFECTIVENESS

WIN-WIN

Tianma Japan, Ltd. Confidential and Proprietary